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Abstract—Successive linear programming (SLP) has shown
promising potential for solving the ACOPF problem. It is,
however, essential to improve the computational performance
of the algorithm. One way to achieve this goal is through
initialization of the algorithm with a near-optimal solution. This
paper examines various approaches to initialize the SLP-ACOPF,
including uniform, flat, and warm start. AC- and DC-based
techniques as well as a hybrid method are developed for warm-
start initialization. The DC-based technique employs the solution
to a DCOPF, while the AC-based methods employ the solution
to a second order conic programming (SOCP) relaxation of
the ACOPF. We also examine a hybrid method, where voltage
magnitudes are obtained by SOCP and voltage angles are taken
from DCOPF. The methods are tested on a range of systems, using
off-the-shelf solvers, i.e., Gurobi and CPLEX, and the results are
presented and compared.

Index Terms—AC optimal power flow (ACOPF), successive
linear programming (SLP), second order conic programming
(SOCP), warm-start.

I. INTRODUCTION

]

The objective of power system operation is to serve the
customers at the minimum cost, taking into the consideration
the physical constraints of the system. This can be expressed
as an optimization problem, referred to as the optimal power
flow (OPF). The OPF problem in its original form (ACOPF)
is a nonlinear and non-convex optimization problem, which
is challenging to solve [1f, [2]. The challenges include the
difficulty to identify a globally-optimal solution and more
importantly its computational burden. Consequently, every
single system operator in the U.S. chooses to employ one or
another form a linearized version of the OPF problem, referred
to as DCOPF [3], [4]. Since DCOPF abstracts from some of
the complexities of the original problem, it does not produce
a physically-feasible solution. Thus, the operators need to
adjust the DCOPF solution, in order to achieve feasibility
[S]. The simplifications embedded in the DCOPF along with
such out of market adjustments lead to inefficiencies in the
final solution. A report by the Federal Energy Regulatory
Commission (FERC) estimates that the status quo may result
in up to 10% additional cost, which can be avoided through
efficient ACOPF solvers [_2].
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The North American power grid is the most complex
machine ever built by humans, with an annual economic sales
value of more than $350 billion [6]]. This implies that even
a one percent improvement in the operation of the system
can easily result in saving over 3 billion dollars a year. Since
the result of DCOPEF is likely not close to the globally-optimal
solution to the original OPF, there is a growing interest among
academic scholars to work around techniques that would make
the ACOPF work fast enough for the real-time operations, and
thereby operating the system more efficiently. The challenge
remains to be the computational complexity of finding a
quality solution within the limited available time.

Many methods have been proposed and tested for solving
ACOPF, including a variety of convex relaxation techniques
[7]-[10]. Another approach that is shown to perform well
is the successive-linear programming (SLP) approximation of
the currentvoltage (IV) ACOPF formulation [11]]. This method
takes advantage of the linear representation of network flows
in a rectangular IV formulation, compared to a conventional
quadratic power flow formulation in polar coordinate. SLP
IV-ACOPF algorithm demonstrates promising scalability and
performance properties [12].

The performance of SLP, in terms of convergence quality,
objective value, and computational performance, largely de-
pends on the initialization of the SLP algorithm. There are
basically two types of initialization methods: 1) cold-start,
which does not require a prior knowledge of the operating
state; and 2) warm-start, which requires some knowledge of a
quality solution, or a prior operating state.

This paper aims to improve the computational time required
for solving the SLP IV-ACOPF problem. The contributions of
this paper can be summarized as follows:

1) Three different approaches based on SOCP are devel-

oped and tested to warm-start the SLP method.

2) A hybrid SOCP-DCOPF method is developed and eval-

uated to initialize the SLP algorithm.

3) A few improvements are introduced to the SLP algo-

rithm in order to reduce the run-time.

The rest of the paper is organized as follows. In Section II,
we present and formulate an SLP algorithm for IV-ACOPE.
This section also discusses uniform and flat starts. Different
warm-start approaches are presented in Section III. Section



IV presents the computational performance of improved SLP
algorithm with different initializations. A discussion of the
results are provided in Section V, and finally conclusions are
drawn in Section VI

II. SUCCESSIVE LINEAR PROGRAMMING

A. Algorithm Outline

Fig.[T]shows the flow-chart of the improved SLP IV-ACOPF.
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Fig. 1. The improved SLP IV-ACOPF algorithm.

The algorithm proposed by [12], originally, develops an SLP
method for solving IV-ACOPF. Fig[l] is an extended process
diagram of the algorithm described in [12]] with two proposed
improvements. Firstly, a step for increasing the penalty value
is added in the algorithm, which incentivizes the iteration to
quickly move toward a feasible solution. Secondly, the number
of variables are significantly reduced, which ultimately im-
proves the run-time by eliminating the unnecessary variables.

B. SLP Formulation

The SLP formulation presented in [12] is based on
coupled model between voltage angles and magnitudes.
The network model is used under the assumption of
balanced three-phase network operating under steady-state
conditions. The nonlinear IV-ACOPF and the subsequent
LP sub-problem is formulated in rectangular coordinates
for the voltage phasor v,, = v + jv) at each bus n € N,
the current phasor ¢, = ¢, + jil at each bus n € N, and
the current iy() = iy, —|—jif€(_) on all network flows k(.) € F.

In order to linearize the quadratic cost function of the gen-
erators in objective function of optimal power flow problem,
a pice-wise linear interpolation is applied, and this approach
yields a tighter upper bound on the quadratic cost function
since typically generators has a monotonically increasing offer

curves [12]]. Hence, the objective function becomes as shown
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The nonlinear terms in some constraints of a nonlinear V-
ACOPF formulation in rectangular coordinates are addressed
by applying first order Taylor series approximation. To ap-
proximate the first order linearization, Taylor series evaluation
points, which are denoted with a “hat” are used for iteration
h [12].
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C. Uniform Start

The uniform starts assume that v?, «~ U(V," V,"4%) and
vﬁl = 0 for all n € N; given that the uniform start does not
incorporate any knowledge of a prior operating state, it is by
definition a cold start.

D. Flat Start

The flat start assumes voltages to be equal to 1 p.u. at all
nodes, while assuming zero phase angle for all buses. Given
that the flat start does not incorporate any knowledge of a prior
operating state, it is by definition a cold start.

III. WARM START

In warm-start, we run a relaxed ACOPF, and the results (i.e.
either nodal voltage magnitudes, nodal voltage angle, or both)
are used in the initialization step for the SLP approach. The
warm-start can be examined in three categories:

1) DCOPF-based start;

2) SOCP-based start;

a) Both nodal voltage magnitudes and angles are
obtained from SOCP;

b) Nodal Voltage magnitudes are obtained from SOCP
and their phase angles are assumed to be zero;

¢) Nodal Voltage magnitudes are obtained from SOCP
and their phase angles are obtained from the results
of running a power flow;

3) Hybrid DCOPF-SCOP Start.

A. DCOPF Warm Start

In this approach for SLP initialization, first, the DCOPF is
solved, using (38) as objective function.
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The solution 0] is fed to the SLP initialization as ZV;, and
nodal voltage magnitudes |V;| are assumed to be 1 p.u. for all
buses.

B. SOCP Warm Start

In ACOPF SOCEP relaxation, we use branch flow model with
SOCP relaxation [9], [[13]. Similar to DCOPF we first solve
the SOCP relaxation of ACOPF, for which we use the same
objective function as in DCOPF (i.e. (38))
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where P;; =Re[S;;], Qi; =Im[S;;], li; = |I;; 2 v =
p; =Rels;], and ¢; =Im([s;].
The nodal voltages can be obtained by
Vil = /vf (46)

Whereas, the nodal voltage angles can be calculated as
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Ajf,,. is the pseudo inverse matrix of adjacency matrix Ay,
and 6, = 0.

Ay can be calculated using the equation (@8]
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1) SOCP; Start: In this approach, the |V;| and ZV;
needed for initializing the SLP algorithm is both obtained
from SOCP relaxation formulation, which is the minimization
of subject to @), @), @), @2) - @3). After solving SOCP
relaxation, the nodal voltage magnitudes can be obtained
using (@6) and their corresponding angles can be obtained
using @7). The disadvantage of this initialization method
is that it takes visible time for large cases to calculate the

A;:Xn’ which is needed for recovering £/V; for each bus.

Aakxl

(48)

2) SOCP, Start: In this approach, |V;| needed for ini-
tializing the SLP method is obtained from SOCP relaxation
formulation, which is the minimization of (38) subject to (2),
@), @), @2) - @3). After solving SOCP relaxation problem,
the nodal voltage magnitudes can be obtained using (@6).
However, unlike SOCP; start, the ZV; in this approach is



TABLE I
SLP OBJECTIVE FUNCTION VALUES FOR DIFFERENT BENCHMARK CASE STUDIES USING DIFFERENT INITIALIZATION TECHNIQUES.

Cases Flat Uniform DCOPF SOC P, SOC P> SOCP;3 SOCP+
DCOPF
IEEE 14 bus $8,091.38 $8,101.74 $8,090.97 $8,090.92 $8,090.86 $8,151.52 $8,095.93
IEEE 30 bus $577.47 $577.49 $577.37 $577.75 $577.47 $577.49
IEEE 57 bus $41,763.36 $41,770.89 $41,762.68 $41,779.15 $41,777.50 $41,778.69 $41,798.02
IEEE 118 bus $130,064.87 $130,045.31 $130,452.85 $130,112.08 $130,162.10 $129,930.05 $130,431.07
IEEE 300 bus $720,422.26 $721,536.05 $721,229.40 $723,846.30 $720,918.99 $720,122.61 $729,869.52
case3120sp $2,141,843.20 | $2,142,927.77 | $2,147,241.49 wok $2,142,623.65 | $2,142,186.80 | $2,150,969.10
case6515rte $109,566.84* # $110,181.18%* # # $109,579.05 #

* Max 50 iterations reached

** Quieting without a feasible solution

# Couldn’t solve within one hour

TABLE I
SLP RUNTIME IN SECONDS FOR DIFFERENT BENCHMARK CASE STUDIES USING DIFFERENT INITIALIZATION TECHNIQUES.

Cases Flat Uniform | DCOPF | SOCP; SOCP, | SOCP;3 SOCP+
DCOPF
IEEE 14 bus 0.14 0.15 0.14 0.12 0.12 0.10 0.05
1IEEE 30 bus 0.18 0.19 0.20 0.182 0.17 0.16
1IEEE 57 bus 0.25 0.24 0.24 0.22 0.22 0.20 0.16
IEEE 118 bus 0.63 0.62 0.66 0.61 0.59 0.55 0.54
IEEE 300 bus 2.31 2.51 3.77 2.48 1.97 2.03 2.47
case3120sp 265.00 320.00 188.00 *¥ 239 182 171
case6515rte 2330.00 # 1970.00 # # 1680 #

** Quieting without a feasible solution

assumed to be zero. This approach will save the run-time for
calculating the Azxn and recovering angles, which could be
significant for large bus case systems.

3) SOCP; Start: In this approach, the |V;| and £V; needed
for initializing the SLP solution is both obtained from a fast
decoupled power flow using the formulation in [14]]. p¢ and

9 input for the fast decoupled power flow is obtained from

SCOP relaxation formulation for solving ACOPF, which is the

minimization of (38) subject to @), (3), @), @2) - @E3).
C. Hybrid SOCP-DCOPF Warm-Start

In this approach, the |V;| needed for initializing the SLP
solution is obtained from SOCP relaxation formulation, which
is the minimization of (38) subject to @), G), @). @E2) - @E).
After solving SOCP relaxation optimization, the nodal voltage
magnitudes can be obtained using (6). ZV; can be obtained
using DCOPF, where the same (38) is solved as objective
function subject to (2), @), @), (39 @0), @I). For the sake of
improving the run-time of overall solution, SOCP and DCOPF
can be run in parallel as the two are independent of each other.

IV. CASE STUDIES

We used Java to implement all formulations, and employed
eclipse to solve each instance. In this computational study,
eclipse employs CPLEX 12.71 and Gurobi 7.51 as second
order conic programming and linear programming solvers. All
computational experiments have been carried out on a HP
ENVY Desktop 750-524 with Intel(R) Core(TM) i7-7700 3.60
GHz 8-Core Processors, 16GB RAM, and the Windows 10
operating system using a single thread.

Different test systems such as IEEE benchmarks, a polish
system and RTE systems have tested for various SLP initial-

# Couldn’t solve within one hour

ization approaches. As for the IEEE benchmarks, the 14- bus,
30-bus, 57 bus, 118-bus, and 300-bus test cases were solved.
In polish system, 3120 bus system and in RTE case6515rte
have been tested for various SLP initialization approaches.

V. RESULTS

This section presents a comparison of performance between
different SLP initialization techniques for different test cases.
Table [[] compares the objective function values for different
benchmark case studies using different initialization tech-
niques. This table provides an insight on how different start
approach can affect the objective function value. Table |Ilj com-
pares the SLP runtime for different benchmark case studies
using different initialization techniques. This table provides an
insight on how different start approach can affect the runtime
and subsequently the convergence quality of SLP formulation.
Fig. [2] picks the IEEE 118-bus test system and demonstrates
the impact of different SLP initialization techniques on conver-
gence quality, objective value, and computational performance.

VI. DISCUSSION

By looking at the results, particularly Fig. [2] the impact of
different initialization techniques for SLP on its convergence
quality, objective value, and computational performance can
be clearly observed. There are two factors to the initialization
technique that affects the performance of the SLP algorithm:
the nodal voltage magnitudes |V;| and nodal voltage angles
ZV;. The larger the system, the more significant will be
the effects, particularly on the runtime. SOCP relaxation can
provide a feasible voltage magnitude set |V;|; however, the
nodal voltage angles ZV; provided by SOCP relaxation are far
away from the angle values in the feasible solutions. Fig.
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Fig. 2. The impact of different SLP initialization techniques on the performance of SLP algorithm for IEEE 118-bus test system.

shows that the objective function value and the runtime depend
on the voltage input. As the initial solution gets closer to the
final solution (both in terms of feasibility and optimality),
the final value of the objective function improves and the
runtime becomes smaller. In this context, SOCP; which
takes the voltage magnitudes from SOCP and voltage angles
after running a full AC power flow (i.e. an input close to
feasible solution) provides the best objective function value
and runtime.

TABLE III
RUNTIME IN SECONDS FOR OBTAINING |V;| AND ZV; FROM SOCP
INCLUDING THE SOCP TIME

Cases SOCP, | SOCP; | SOCPs | SOCP+
DCOPF
IEEE 14 bus 0.0526 0.0501 0.236 0.127
IEEE 30 bus 0.0505 0.0505 0.148 0.0505
IEEE 57 bus 0.0631 0.0633 0.272 0.143
1IEEE 118 bus 0.148 0.147 0.429 0.236
IEEE 300 bus 0.514 0.507 1.30 0.597
case3120sp 2.13 2.13 3.66 2.13
case6515rte 16 16 16.8 16

VII. CONCLUSION

This paper examines various approaches to start a successive
linear programming (SLP) algorithm for solving alternating
current optimal power flow (ACOPF). Moreover, a number of
improvements are proposed for the original SLP IV-ACOPF
method. The initialization approaches have been tested on a
range of test systems with different sizes ranging from 14-bus
to 6515 buses. The results demonstrate the SOC Ps yields
the the fastest run time and the best objective function value
for most of the test cases. This method takes the voltage
magnitudes from SOCP and voltage angles after running an
AC power flow. The performance superiority becomes more
apparent as the size of the systems increase, which emphasizes
the potential for real-world large-scale systems.
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