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Abstract—Severe weather is the primary cause of power out-

ages in the U.S. Despite the availability of weather forecast infor-
mation to power system operators, such data is not systematically 
integrated in operation models. This paper is the first to develop 
an integrated platform to convert the weather data into appropri-
ate information for operation, during hurricanes. To do so, first, a 
structural model of the transmission towers is developed to enable 
stability analysis with dynamic wind loading. The model produces 
failure probabilities as a function of the wind speed. These proba-
bilities are, then, integrated within a day-ahead security-con-
strained unit commitment framework to guide preventive opera-
tion. The resulting day-ahead schedule will be more secure as it 
will rely less on the elements that are likely to fail due to the hur-
ricane. Simulation studies are conducted on IEEE 118-bus system, 
affected by synthesized Irma and Harvey hurricanes, to test the 
effectiveness of the method. The platform, presented in this paper, 
was able to prevent 33% to 83% of the blackouts induced by the 
hurricanes, in our simulation studies. Further research is required 
to investigate the impacts of flooding, damage to the distribution 
network, and the influence of weather forecast uncertainty. 

Index Terms—Dynamic structural modeling, extreme events, 
hurricane, power outage, power system reliability, preventive op-
eration, stochastic optimization, transmission outage. 

I. NOMENCLATURE 

A.  Structural Model 
Indices  
l Coefficient compared with limit state. 
𝑘 Transmission line. 
𝑖, 𝑗 Location indices of the transmission tower. 
𝑛𝑡 Dimension of the wind loadings on one transmis-

sion tower. 
𝑚 Indices of tower locations in the transmission line. 
 

Variables 
 

𝐹) 𝑉  Structural wind fragility at wind speed 𝑉. 
𝐹+(𝑡) Wind load at time 𝑡. 
𝜔 Fluctuating wind circular frequency.  
𝐻(𝜔) Decomposed matrix of cross spectral density ma-

trix by Cholesky decomposition.  
𝑆(𝜔) Cross spectral density matrix. 
𝑓 Fluctuating wind frequency.  
𝑆2 𝑧2, 𝑓  Auto power spectrum at height 𝑧2 at frequency 𝑓. 
𝑆24 𝑟, 𝑓  Cross spectral density spectrum of node 𝑖 and 𝑗 at 

a distance of 𝑟 at frequency 𝑓. 
𝑆44 𝑧4, 𝑓  Auto power spectrum at height 𝑧4 at frequency 𝑓. 

𝑆6 𝑓  Auto power spectrum of fluctuating wind at fre-
quency 𝑓.  

𝑣4(𝑡) Fluctuating wind speed on node 𝑗 at time 𝑡. 
𝑣4 𝑦4, 𝑧4, 𝑡  Fluctuating wind speed at transverse coordinate 𝑦4 

at height 𝑧4 at time 𝑡.  
𝑉 Mean wind speed.  
𝑉(𝑡) Wind time history. 
𝑉9 𝑟9  Gradient wind speed at a radial distance of 𝑟9 from 

hurricane center.  
𝑉 𝑧2  Mean wind speed at height 𝑧2. 
𝜃4; 𝜔;<  Compound angle of 𝐻4; 𝜔;< . 
𝑟9 Radial distance from hurricane center.  
𝐹)(𝑉) Tower failure probability under wind speed V. 
𝑉; Mean wind speed at the 𝑚=> tower location. 
𝑃; Damage and failure probability.  
𝑃 𝐹𝐿, 𝑘  Failure probability of transmission line 𝑘. 
𝑃 𝑆𝐿, 𝑘  Survival probability of transmission line 𝑘.  
  
Parameters  

𝐴, 𝐵 Scaling parameters for horizontal wind profile cal-
culation. 

𝐴C Projected area.  
𝐶+ Drag coefficient.  
𝐶E Horizontal related exponential coefficient.  
𝐶F Vertical related exponential coefficient. 
𝑓G Coriolis parameter. 
𝐾I Stiffness matrix of lumped mass model. 
LS Limit state of structure. 
N Positive large integer.  
𝑝K Ambient pressure.  
𝑝G Central pressure.  
𝑉LM Mean wind speed at height10m. 
𝑉 Mean wind speed. 
𝑉LM 10-minute mean wind speed at the height of 10m. 
𝑦2 Transverse coordinate at node	𝑖. 
𝑦4 Transverse coordinate at node 𝑗. 
z Height of mean wind speed. 
𝑧LM Height constant of 10m. 
𝛼 Ground roughness. 
𝜌 Air density. 
𝜑;< Independent uniform distribution phase angle. 
𝜔RS Cut-off frequency. 
∆𝜔 Frequency increment. 
𝑁𝑇 Number of towers in one transmission line. 
  

B.  Preventive Operation Model 
Indices 
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𝑘	 Transmission line. 
𝑔	 Generator. 
𝑛	 Node. 
𝑠	 Scenario. 
𝑠𝑒𝑔	 Segment of linearized generator cost function. 
 

 

Sets 
𝜎[(𝑛)	 Transmission lines with their “to” bus connected 

to node 𝑛. 
𝜎\(𝑛)	 Transmission lines with their “from” bus con-

nected to node 𝑛. 
𝑔(𝑛)	 Generators connected to node 𝑛. 
  
Variables 
𝐹],^,=	 Real power flow through transmission line 𝑘in 

scenarios 𝑠 at time 𝑡. 
𝐿K,^,=_ 	 Load loss at node 𝑛in scenario𝑠 at time 𝑡. 
𝑃9,^,= Real power generation of generator 𝑔 in scenario𝑠 

at time 𝑡. 
𝑃9,^,=`  Over-generation of generator 𝑔 in scenario𝑠 at 

time 𝑡. 
𝑃9,^,=
^a9 Real power generation of generator 𝑔 in scenario𝑠 

in segment 𝑠𝑒𝑔 at time 𝑡. 
𝑢9,= Unit commitment (1: generator 𝑔 is on at time 𝑡; 

0: generator 𝑔 is off at time 𝑡.) 
𝑣9,= Startup variable (1: generator 𝑔 starts up at time 𝑡; 

0: generator 𝑔 does not start up at time 𝑡.) 
𝑤9,= Shutdown variable (1: generator 𝑔 shuts down at 

time 𝑡; 0: generator 𝑔 does not shut down at time 
𝑡.) 

𝜃K,^,= Voltage angle at bus 𝑛 in scenario𝑠 at time 𝑡. 
𝜃de,],^,= Voltage angle at the “from” node of line 𝑘 in sce-

nario𝑠 at time 𝑡. 
𝜃=f,],^,= Voltage angle at the “to” node of line 𝑘in sce-

nario𝑠 at time 𝑡. 
 

Parameters 
𝑏] Susceptance of transmission line 𝑘. 
𝑐9,^a9<2Kaie Linear cost of generator 𝑔 in segment 𝑠𝑒𝑔. 
𝑐_ Cost of load loss ($/MWh). 
𝑐9j_ No load cost of generator 𝑔. 
𝑐` Cost of over generation ($/MWh). 
𝑐9lm Shutdown cost of generator 𝑔. 
𝑐9ln Startup cost of generator 𝑔. 
𝐹];io Thermal/stability limit of transmission line 𝑘. 
𝐿K,^,= Load at bus	𝑛in scenario 𝑠 at time 𝑡. 
𝑁p Number of buses in s system. 
𝑁9 Total number of generators. 
𝑁^ Number of scenarios. 
𝑁^a9 Number of segments for the linearized generator 

cost function. 
𝑝],𝑡𝑘 Probability of line 𝑘 to fail at time 𝑡]. 
𝑝^ Probability of scenario 𝑠. 
𝑃9;io Upper generation limit of generator 𝑔. 
𝑃9;2K Lower generation limit of generator 𝑔. 
𝑃9
^a9,;io Upper generation limit of generator 𝑔 in segment 

𝑠𝑒𝑔. 
𝑅𝑅9 Hourly ramp-rate for generator 𝑔. 
𝑡r The time that hurricane starts. 

𝑡] The time that line 𝑘 fails. 
𝑇 Length of the investigated time period. 
𝑇s Number of time periods with different probabili-

ties of transmission line failure. 
𝑇9+ftK Minimum down time for generator	𝑔. 
𝑇9
RS Minimum up time for generator	𝑔. 
𝑧],^,= Transmission line 𝑘’s status at time 𝑡 in scenario 

𝑠 (1: line is closed; 0: line is open). 
∆𝜃];io Maximum value of bus voltage angle difference 

to maintain stability for line 𝑘. 
∆𝜃];2K Minimum value of bus voltage angle difference to 

maintain stability for line 𝑘. 

II. INTRODUCTION 
According to a report by the Department of Energy, severe 

weather is the leading cause of power outages in the U.S. [1]. 
Hurricanes and tropical storms are one main category of ex-
treme weather events that lead to large blackouts, both in terms 
of lost electric load and number of affected customers[2], [3]. 
The 2017 hurricane season clearly revealed the vulnerability of 
the U.S. electric power grid to the hurricanes. In August 2017, 
hurricane Harvey caused about 300,000 customer outages in 
Texas [4]. About two weeks later, in September, hurricane Irma 
led to outage of more than 6 million customers in Florida (59% 
of total FL customers) [5] and just below a million customers 
in Georgia (22% of total GA customers) [6]. Later in Septem-
ber, hurricane Maria made a devastating landfall in Puerto Rico, 
which left the entire island in complete darkness [7]. As of the 
end of 2017, more than three months after the hurricane’s land-
fall, still about 30% of the load was not recovered. Clearly, the 
existing reliability practices are inadequate under hurricanes. 

Power system reliability is often achieved through imple-
mentation of various redundancies, so that the system with-
stands likely disturbances [8]–[10]. Reliability standards set by 
North American Electric Reliability Corporation (NERC) re-
quire the operators to prevent blackouts under the random out-
age of one (N-1) or two (N-1-1) bulk power elements [11], [12]. 
Hurricanes, however, usually lead to outage of multiple ele-
ments, well beyond the conditions of NERC standards. For ex-
ample, Electric Reliability Council of Texas (ERCOT) experi-
enced 97 transmission line outages (139 kV and above) after 
hurricane Harvey made landfall [13]; similarly, hurricane 
Sandy caused the outage of over 218 high-voltage (115 kV and 
above) transmission lines [14]. Clearly, the conventional relia-
bility tools, which the industry makes use of, are neither de-
signed for, nor applicable to such extreme conditions. 

For the case of hurricanes, rich meteorological information, 
such as wind direction and speed, is forecasted and available to 
power system operators [14], [15]. Some system operators even 
have access to meteorologists onsite [14]. However, the 
weather information is often not converted to appropriate inputs 
for systematic use in preventive operation. The conservative 
changes to the operation procedures, during severe weather, is 
heavily based on engineering judgement and operators’ 
knowledge. Thus, many effective but unknown preventive ac-
tions are missed, increasing the size of power outages. 

There is a vast body of literature which aims to estimate the 
power outage statistics (e.g., number of customers without 
power, etc.) with the weather forecast data before the hurricane 
[16]–[23]. Such statistical models, though may produce high-
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quality results, are only able to provide macro-scale statistics 
about the outage, without any details on the element-level fail-
ures. There also exists a number of studies on optimizing the 
repair and restoration plan after the hurricane [24]–[27]. How-
ever, the literature on preventive operation during the hurricane, 
using weather forecast information, is almost nonexistent. The 
only published research in this domain that we are aware of in-
cludes [28] and the authors’ own study [29]. Both [28] and [29] 
show promising prospect for preventive operation; however, 
they do not properly model the weather data, estimate the dam-
age to power system component through dynamic structural 
analysis, and integrate the predicted damage information in 
day-ahead operation. This paper is the first to develop such an 
integrated framework and analyze the effectiveness of preven-
tive day-ahead operation under synthesized hurricanes. In real-
ity, the weather forecast information includes inherent uncer-
tainties [30]; however, this paper primarily focuses on explor-
ing the feasibility and effectiveness of preventive operation as-
suming that the weather forecast is exact. 

It is important to acknowledge that this paper exclusively fo-
cuses on the transmission-level component damages. Historic 
data verifies that generators are usually not prone to damage by 
hurricanes, as they are protected in an indoor environment with 
strong structural support [31]; a small number of issues are re-
ported for generators due to flooding. The same report confirms 
that hurricanes cause significant damage to distribution and 
transmission systems [31]. Due to the radial arrangement of the 
distribution network, there is very little room for preventive op-
eration at the distribution level. We acknowledge the vulnera-
bility of the distribution network to severe weather, but we 
overlook that in this paper. To further justify this assumption, it 
is important to note that power outages caused by distribution-
level damages are local. However, transmission-level failures 
could lead to power outages far outside the area directly af-
fected by the hurricane, with healthy distribution networks. 
Such outages are likely avoidable through advanced models 
that enable employment of weather forecast data in preventive 
operation. This is precisely what the current paper intends to 
achieve. In doing so, this paper also exclusively focuses on the 
wind feature of the hurricanes, ignoring other factors like flood-
ing. Again, we acknowledge that flooding may damage the 
power system components. However, the majority of the fail-
ures during a hurricane is caused by its strong winds. 

This paper, first, employs weather forecast information, 
which mainly includes wind speed, to estimate the damages to 
transmission system components. To do so, a structural model 
is developed, which analyzes the failure of transmission towers, 
due to the dynamic wind loading. The model estimates the like-
lihood of transmission line failure as a function of wind speed. 

The estimated failure probabilities are then explicitly mod-
eled within the day-ahead security-constrained unit commit-
ment (SCUC). Load shedding, in the SCUC formulation, is pe-
nalized at a high cost. Thus, electric load will only be shed if 
the damaged network cannot support the delivery of energy to 
that location, or if such delivery is extremely costly. The math-
ematical representation of this problem is a stochastic mixed-
integer linear program. To reduce the computational burden of 
the problem, a simple scenario reduction technique is used. The 
schedule, calculated through this framework, will rely less on 
the transmission elements that are prone to failure due to the 

hurricane. Thus, the system reliability will be enhanced and the 
power outage will be reduced. 

The simulation results, presented in this paper, suggest that 
appropriate integration of weather data in power system opera-
tion will significantly reduce power outages during a hurricane 
event. This reduction in our simulation studies, for IEEE 118-
bus system under synthesized Irma and Harvey hurricane sce-
narios were anywhere between 33% and 83%, which is rather 
encouraging. 

The rest of this paper is organized as follows. Section III pre-
sents the transmission tower structural model and its stability 
under dynamic wind loading. Section IV describes generation 
of contingency scenarios, using the failure probabilities, esti-
mated through the structural model. Section V develops the pre-
ventive SCUC model using stochastic optimization. Case stud-
ies are presented and discussed in Section VI. A brief discussion 
of the computational complexity of the model is presented in 
Section VII and finally, section VIII concludes this paper. 

III. TRANSMISSION TOWER DYNAMIC RESPONSE UNDER 
WIND LOADING 

This section briefly explains the derivation of a finite element 
model of transmission towers to enable fragility analysis. All the 
towers are assumed to follow a generic design [32], with the 
height of 55 m, steel-made members (ASTM A-36), and L-
shaped cross sections. A finite element model of this tower is 
built in ANSYS. To reduce the computational time, the tower 
model is further reduced into a 13 degree of freedom lumped 
massed model as shown in Fig. 1. Stiffness matrix 𝐾I  of the 
lumped mass model of 13 degrees of freedom is derived from 
the finite element model through flexibility method [33]. 

 
Fig. 1. Finite element model and simplified model of transmission towers. 

Dynamic wind loading characteristics are composed with 
steady and fluctuating wind components [34]. For mean wind 
component, the changes over height is described by the power 
law [35] as shown in (1). As most transmission towers are built 
in the open plain, 𝛼 equals 0.16. 
u
uvw

= ( y
yvw
)z (1) 

Fluctuating wind speed is simulated through WAWS method. 
According to the wind speed record, fluctuating wind speed can 
be expressed as a Gaussian stationary random process [36]. The 
cross spectral density matrix for an nt-dimensional zero-mean 
stationary Gaussian random process 𝑣4(t)(j = 1,2,···, nt) is pre-
sented in (2). 
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In order to obtain the power spectrum of fluctuating wind, 
Davenport spectrum [37] is used. The auto power spectrum of 
fluctuating wind is calculated in (3). 

𝑆6 𝑓 = 4𝛼𝑉LM
� o�

d(L[o�)�/�
				𝑥 = L�MMd

uvw
 (3) 

Based on the auto power spectrum of 13 nodes, the cross spec-
tral density spectrum can be calculated as shown in (4)-(5). 

𝑆24 𝑟, 𝑓 = 𝑆22 𝑧2, 𝑓 𝑆44 𝑧4, 𝑓 𝐶𝑜ℎ 𝑟, 𝑓 	𝑖 ≠ 𝑗	 (4) 

𝐶𝑜ℎ 𝑟, 𝑓 = 𝑒𝑥𝑝	(
\�d ��� E�\E�

�
[��� y�\y�

�

u y� [u y�
) (5) 

In this research, we choose 𝐶E = 8 and 𝐶F = 7. Therefore, 
the cross spectral density matrix can be obtained, and decom-
posed, using Cholesky decomposition, as shown in (6)-(7). 
𝑆 𝜔 = 𝐻 𝜔 𝐻∗(𝜔)I (6) 

𝐻(𝜔) =

𝐻LL 𝜔 						0											 ··· 									0
𝐻�L 𝜔 𝐻�� 𝜔 											 ··· 				0

············
𝐻K=L 𝜔 𝐻K=� 𝜔 ·			·· 𝐻K=K= 𝜔

 (7) 

According to Shinozuka theory, the fluctuating wind can be 
represented by (8)-(9) [38]. 
𝑣4 𝑦4, 𝑧4,𝑡 = 2(∆𝜔) 𝐻4;(𝜔;<)j

<�L
4
;�L 𝑐𝑜𝑠 𝜔;<𝑡 −

𝜃4; 𝜔;< + 𝜑;< 					𝑗 = 1,2,···，𝑛𝑡 (8) 
𝜔< = 𝑙 − 1 ∆𝜔 + ;

j
∆𝜔, 𝑙 = 1,2,···，𝑁 (9) 

Fluctuating wind component is simulated using the above 
equations. There are 13 wind speed at different heights based 
on the division of the transmission tower. The top tower fluctu-
ating wind time history is shown in Fig. 2-top; the fluctuating 
wind speed is further compared with the desired power spec-
trum, as shown in Fig. 2-bottom. 

 
Fig. 2. Wind time history and validation; top: wind speed at the tower tip; bot-
tom: comparison between simulated and theoretical value.                  

Dynamic wind loading is derived from wind time history and 
projected area [39], as shown in (10).  
𝐹+(𝑡) = 0.5𝜌𝑉(𝑡)�𝐶+𝐴C (10)	

Air density, 𝜌, is chosen as 1.195kg/𝑚� .	𝑉(𝑡) is the wind 
time history, which is the sum of the mean wind and fluctuating 
wind components. Drag coefficient,	𝐶+, is usually determined 
by the wind tunnel test [39]. In this research, we assume all 
wind loads are added on the transmission tower perpendicu-
larly; thus, we choose the drag coefficient based on the litera-
ture with similar transmission tower shape and height [38], [39]. 
By adding wind load on the finite element model and simplified 

lumped mass model, the top tip displacement of transmission 
tower is demonstrated in Fig. 3. 

 
Fig. 3. The comparison of the top displacement between finite element and 
lumped mass models. 

A.  Transmission Tower Fragility under Extreme Wind 
A fragility curve describes the likelihood of damage and fail-

ure of a structure under different loading intensity (earthquake 
ground motion intensity [40], wind speed, etc.). In structural 
wind fragility, the damage and failure probability 𝐹) 𝑉  under 
a given wind speed 𝑉can be calculated as shown in (11). 
𝐹) 𝑉 = 𝑃[𝑙 > 𝐿𝑆｜𝑉LM = 𝑉]	 (11) 

The damage condition is defined as the structure perfor-
mance exceeding a limit state (𝐿𝑆). In this paper, the limit states 
are determined as transmission tower’s top displacement over 
tower height is at 1.5%, 2%, 2.5% and 3%. Different fragility 
curves under different limit states are demonstrated in Fig. 4. 
The marked points are the probability of damage or failure of 
the individual tower under different wind speeds. The solid 
curve is the fitted normal cumulative distribution function. In 
this paper, the failure condition of all transmission towers is de-
termined at a displacement of over 2.5%. 

 
Fig. 4. Wind fragility curve of a transmission tower. 

B.  Transmission System Fragility under Extreme Wind 
In order to estimate the performance of the transmission sys-

tem in the hurricane region, two steps of calculation are in-
volved. First, a horizontal wind profile is required to model the 
wind speed distribution in the region, affected by the hurricane. 
The horizontal wind profile can be express via (12) [41]. 

𝑉9 𝑟9 = [
�� S�\S  aoS \ ¡

¢£¤

¥e£¤
+ e£�d �

¦
]L/� − 𝑟9𝑓G/2 (12) 

𝑉9 𝑟9  is the gradient wind speed as a function of radial dis-
tance, 𝑟9, from the hurricane center. This paper simplifies the 
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calculation of the gradient as only a function of the radius dis-
tance. Wind speed increases linearly when it is in the 100-km 
range of the hurricane center. Outside that range, wind speed 
shows a parabolic attenuation.  

The second step to estimate the transmission system health 
condition requires a calculation of each transmission line’s fail-
ure probability based on the 𝑚=>  individual transmission 
tower’s failure probability 𝑃; = 𝐹),; 𝑉; . We denote the 𝑘=> 
transmission line’s failure probability by 𝑃 𝐹𝐿, 𝑘 , and its sur-
vival probability by 𝑃 𝑆𝐿, 𝑘 . For a transmission line to survive 
a wind load, all of its towers must survive. Thus, 𝑃 𝐹𝐿, 𝑘  can 
be calculated as shown in (13).  
𝑃 𝐹𝐿, 𝑘 = 1 − 𝑃 𝑆𝐿, 𝑘 = 1 − 𝐹),; 𝑉;jI

;�L 	 (13) 
According to the horizontal wind profile and hurricane 

movement track, wind speed at each tower location at each time 
interval can be estimated. This paper assumes that the angle of 
wind is 0, as different wind directions occur on lower spatial 
scales rather than a specific angle [41]. 

IV. TRANSMISSION OUTAGE SCENARIO GENERATION 
Based on the likelihood of each transmission line to fail, 

transmission contingency scenarios can be generated and their 
probabilities can be also calculated. Since different lines may 
fail at different time during the hurricane, each scenario should 
indicate the lines that fail and the time when each of those lines 
go out of service. The scenario generation procedure is illus-
trated in Fig. 5. 

 
Fig. 5. Illustration of the scenario generation procedure. 

According to Fig. 5, each scenario can be uniquely identified 
by a vector with 𝑁pe components, each of which indicating the 
time of failure for a particular line. If a line does not fail in a 
given scenario, the respective value for the line in the scenario 
vector should be greater than the time range of the study, i.e. 
𝑡M + 𝑇s + 1, which means that the line does not fail within the 
duration of the SCUC. The total number of scenarios can, thus, 
calculated as shown in (14). 
𝑁^ = (𝑇s + 1)j§¢  (14) 

Given that transmission line 𝑘 fails at 𝑡] in scenario 𝑠, the 
probability for each scenario is calculated in (15). 
𝑝^ = 𝑝],=¨ (1 − 𝑝],=)

=¨\L
=�=©

j§¢
]�L 	 (15) 

(14) clearly shows how the number of scenarios can grow 
very quickly as the number of lines that are affected increases. 
The size of the scenario set greatly impacts the computational 
time, required for solving the optimization problem. Thus, it is 
essential to reduce the scenario size to an acceptable level. In 
this paper, we use a very simple method and filter out the sce-
narios that have a probability below a cutoff level. 

V. PREVENTIVE STOCHASTIC OPTIMIZATION MODEL 
The proposed preventive stochastic optimization model is 

based on a DC unit commitment (UC) formulation. The formu-
lation explicitly models the transmission outage scenarios, 
caused by the hurricane. The problem identifies a single unit 
commitment solution for all the scenarios, while allowing gen-
eration dispatch to vary under each scenario, as long as the 
ramping limits are not violated. Both over-generation and load 
shedding are allowed under the scenarios, but penalized with a 
high penalty price in the objective function.  

The formulation of the problem is shown in (16) – (28). The 
objective function is expressed in (16), which minimizes the ex-
pected dispatch cost of the system considering generation dis-
patch, over-generation and load shedding under all scenarios. 
Generation limits are expressed in (17) – (19); generation costs 
were calculated using a piece-wise linear cost function. DC 
power flow constraints are expressed in (20) and (21); when a 
transmission line is out of service, both its susceptance and ca-
pacity limit are set to 0 using the binary integer parameter 𝑧],^,=. 
(22) sets the voltage angle of the reference bus to 0. (23) is the 
nodal power balance constraint in which over-generation and 
load shedding are included. (24) and (25) calculate the start-up 
and shut-down variables; (26) is the hourly ramping limit for 
each generator; (27) and (28) are the minimum up and down 
time constraints for each generator. Since the contingencies are 
explicitly modeled, reserve requirements are omitted. 

min 𝑝^

𝑐9,^a9<2Kaie𝑃9,^,=
^a9

j¬­£

^a9�L
+ 𝑐9j_𝑢9,=

+𝑐9ln𝑣9,= + 𝑐9lm𝑤9,= + 𝑐`𝑃9,^,=`

j£

9�L

+ 𝑐_𝐿K,^,=_

j§

K�L

I

=�L

j¬

^�L

 (16) 

𝑃9,^,= = 𝑃9,^,=
^a9

j¬­£

^a9�L
 

(17) 
0 ≤ 𝑃9,^,=

^a9 ≤ 𝑃9
^a9,;io (18)	

𝑢9,=𝑃9;2K ≤ 𝑃9,^,= ≤ 𝑢9,=𝑃9;io (19)	
−𝑧],^,=𝐹];io ≤ 𝐹],^,= ≤ 𝑧],^,=𝐹];io (20) 
𝑧],^,=𝑏] 𝜃de,],^,= − 𝜃=f,],^,= = 𝐹],^,= (21) 

𝜃L,^,= = 0	 (22) 
𝐹],^,=

]∈°± K
− 𝐹],^,=

]∈°² K
+ 𝑃9,^,=

9∈9 K
 

−𝑃9,^,=` = 𝐿K,^.= − 𝐿K,^,=_  (23) 
𝑣9,= − 𝑤9,= = 𝑢9,= − 𝑢9,=\L (24) 

𝑣9,= + 𝑤9,= ≤ 1 (25) 
−𝑅𝑅9 ≤ 𝑃9,^,= − 𝑃9,^,=\L ≤ 𝑅𝑅9 (26) 

𝑢9,=

;[I£
³´\L

=�;

≥ 𝑇9
RS 𝑢9,; − 𝑢9,;\L ,	 

	2 ≤ 𝑚 ≤ 𝑇 − 𝑇9
RS + 1 (27) 

(1 − 𝑢9,=)
;[I£¶·¸�\L
=�; ≥ 𝑇9+ftK 𝑢9,;\L − 𝑢9,; ,	 	

2 ≤ 𝑚 ≤ 𝑇 − 𝑇9+ftK + 1 (28) 

VI. SIMULATION STUDIES 
This section studies the effectiveness of the developed model 

through simulation on the IEEE 118-bus system [42]. To pro-
vide a better understanding, two separate cases are built, where 

0
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the hurricanes affect different parts of the system. First, we 
mapped the IEEE 118-bus system to the transmission network 
in Texas. The first case chooses 13 buses from IEEE 118-bus 
and 19 transmission lines as shown in in Fig. 6-left, denoted as 
layout I. The second case chooses 20 buses and 23 lines as 
shown in Fig. 6-right, denoted as layout II.  Two hurricane sce-
narios were also generated, imitating Hurricane Harvey and 
Irma. As the primary objective of this paper is to explore the 
feasibility and effectiveness of preventive operation, incorpo-
rating weather information, the simulation studies assume that 
the weather forecast is exact. In both scenarios, the maximum 
sustained wind speed is extracted from the National Hurricane 
Center database [43]. Fig. 7-top shows Hurricane Harvey’s 
peak wind speed from 4 am August 26th to 4 am August 27th 
and Fig. 7-bottom shows Hurricane Irma’s peak wind speed 
from 5 pm September 9th to 5 pm September 10th. According to 
section III, horizontal wind speed profile can be approximated 
as shown in Fig. 8. 

 
Fig. 6. Two mappings of IEEE 118-bus system on Texas transmission grid. 

 

Fig. 7. Peak wind speed of Hurricane Harvey and Irma for 24 hours 

 
Fig. 8. Horizontal wind profile as a function of radius distance. 

A.  Transmission System Fragility Analysis 
According to the transmission system analysis procedure, 

described in Section III, failure probabilities of the transmission 
lines under Hurricane Harvey and Irma equivalent scenarios 
can be estimated. Such accumulated probabilities at different 

time intervals are provided in TABLE I-TABLE III. 
TABLE I  

TRANSMISSION LINE FAILURE PROBABILITIES UNDER HARVEY 
Harvey I Harvey II 
Line number 4AM 7AM – 4AM Line number 4AM 7AM-4AM 
69-70 0 0 10-9 0.95 0.95 
69-75 0 0 9-8 0.96 0.96 
69-77 0 0 8-30 0.49 0.49 
78-77 0 0 30-17 0.74 0.74 
82-77 0 0 17-18 0.96 0.96 
82-96 0 0 17-113 0.55 0.55 
82-83 0 0 113-32 0 0 
85-83 0 0 32-31 0.96 0.96 
84-83 0 0 29-31 0.99 0.99 
77-80 0.63 0.63 28-29 0.99 0.99 
97-80 0.83 0.83 27-28 0.99 0.99 
98-80 0.96 0.96 27-115 0.99 0.99 
99-80 0.99 0.99 114-115 0.99 0.99 
80-79 0.96 0.96 114-32 0.98 0.98 
80-81 0.99 0.99 27-32 0.99 0.99 
65-68 0.95 0.95 27-25 1 1 
68-116 0.99 0.99 26-25 0.60 0.60 
66-65 0.16 0.15 23-25 0.42 0.42 
69-68 0.93 0.93 23-32 0.14 0.14 
   23-22 0.88 0.88 
   21-22 0.94 0.94 
   20-21 0.89 0.89 
   26-30 0.51 0.51 

TABLE II   
TRANSMISSION LINE FAILURE PROBABILITIES UNDER IRMA I 

Line number 5PM 8PM 11PM 2AM 5AM 8AM -5PM 
69-70 0 0 0 0.99 1 1 
69-75 0 0 0.33 1 1 1 
69-77 0.01 0.86 1 1 1 1 
78-77 0 0.42 1 1 1 1 
82-77 0 0.65 1 1 1 1 
82-96 0 0.01 0.98 1 1 1 
82-83 0 0.20 1 1 1 1 
85-83 0 0.01 0.91 1 1 1 
84-83 0.09 0.55 1 1 1 1 
77-80 1 1 1 1 1 1 
97-80 1 1 1 1 1 1 
98-80 1 1 1 1 1 1 
99-80 1 1 1 1 1 1 
80-79 1 1 1 1 1 1 
80-81 1 1 1 1 1 1 
65-68 1 1 1 1 1 1 
68-116 1 1 1 1 1 1 
66-65 0.78 1 1 1 1 1 
69-68 1 1 1 1 1 1 

TABLE III  
TRANSMISSION LINE FAILURE PROBABILITIES UNDER IRMA II 

Line number 5PM 8PM 11PM-5PM 
10-9 1 1 1 
9-8 1 1 1 
8-30 1 1 1 
30-17 1 1 1 
17-18 1 1 1 
17-113 1 1 1 
113-32 0.11 1 1 
32-31 1 1 1 
29-31 1 1 1 
28-29 1 1 1 
27-28 1 1 1 
27-115 1 1 1 
114-115 1 1 1 
114-32 1 1 1 
27-32 1 1 1 
27-25 1 1 1 
26-25 1 1 1 
23-25 1 1 1 
23-32 1 1 1 
23-22 1 1 1 
21-22 1 1 1 
20-21 1 1 1 
26-30 1 1 1 
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B.  Transmission Outage Scenarios 
Using the information provided in the TABLE I-TABLE III, 

all the possible transmission outage scenarios were generated 
for the four cases (two hurricanes passing through two different 
parts of the system). Each scenario is a vector, including infor-
mation about the status of all the transmission lines at each hour 
in the studied period. In order to reduce computational burden, 
scenarios with a probability of less than 0.1% were eliminated. 
The probabilities of the remaining scenarios were adjusted pro-
portionally, so that they sum up to 1. The number of simulated 
scenarios for each case is shown in TABLE IV. 

TABLE IV 	
NUMBER OF SCENARIOS CONSIDERED IN EACH CASE 

Hurricane cases Harvey I Harvey II Irma I Irma II 
Number of scenarios 40 157 134 2 

C.  Preventive Operation 
Hurricane Harvey made landfall around 4:00 am, and it was 

able to cause transmission line failures only in the first three 
hours, so the uncertainty of transmission line failures caused by 
this hurricane exists only on the day that the hurricane made its 
landfall. However, for the case of Hurricane Irma, it made its 
landfall around 5:00 pm, and was able to cause transmission 
line failures over the next 15 hours. Thus, the uncertainty of 
damage lasts into two days. In order to study the impact of the 
two hurricanes in a sufficiently long period, while considering 
the industrial practices for operating a day-ahead market, the 
impact of Hurricane Harvey was studied in a 24-hour UC 
model, while that of Hurricane Irma was studied in a 48-hour 
UC model. The simulations were carried out in the following 
manner: 1. Two deterministic unit commitment models, with-
out considering the outage scenarios, were carried out as base 
cases according to the base case formulation presented in [44], 
one over 24 hours and the other over  48 hours. 2. The unit com-
mitment results were obtained from the two base cases and 
fixed in the stochastic model, to calculate the expected load 
shedding and over-generation under the hurricane scenarios 
with business as usual (BAU) operation. 3. The UC was opti-
mized using the stochastic model, in order to evaluate the im-
pact of the hurricanes with the preventive UC model. Steps 2 
and 3 were carried out for the four cases listed in TABLE IV. 
As both load shedding and over-generation are undesirable, 
they were penalized with a penalty factor of $10,000/MWh in 
the stochastic model. 

The expected dispatch costs were obtained for the four cases 
under both BAU and the proposed preventive model, and com-
pared with the base cases in TABLE V. The results are pre-
sented both including and excluding the penalties for over-gen-
eration and load shedding. As the penalty price is very large, 
the cost is dominated by its penalty component, when penalties 
are included. In such cases, the preventive model shows an ob-
vious advantage in terms of achieving a lower cost solution, as 
it effectively reduces over-generation and load shedding. It is 
difficult to compare the costs, when penalties are excluded, be-
cause the cost will generally decrease as more load is shed. 
Thus, comparison purely based on cost is not very meaningful 
here. However, in 3 out of 4 cases, the stochastic preventive 
model converges to a higher cost solution both compared to the 

base case and BAU. The largest increase from the base case is 
for Harvey II, where the preventive model adds 51% to the cost. 
However, the additional cost will help significantly enhance the 
system reliability as will be discussed later in TABLE VI. 

TABLE V  
EXPECTED COST COMPARISON ($M) 

Hurricane 
case Base case  BAU w/ 

penalties  

Preventive 
model w/ 
penalties 

BAU w/o 
penalties  

Preventive 
model w/o 
penalties  

Harvey I 1.14 57.09 33.97 1.01 1.11 
Harvey II (1 day) 160.48 32.96 1.15 1.72 
Irma I 2.28 154.49 105.49 2.00 2.33 
Irma II (2 days) 388.35 66.83 2.17 3.10 

The expected load shedding and over-generation from the 
four cases, under BAU and preventive operation, were calcu-
lated as a percentage of the overall demand during the studied 
period and presented in TABLE VI. In all cases, the preventive 
model was able to reduce the violations anywhere between 33% 
and 83%. As the damages for layout II was especially signifi-
cant, with the BAU model, not only did the load shedding dou-
ble, but also there was a 4-7% of over-generation, which caused 
much larger penalty costs compared to layout I. Using the pre-
ventive UC model, over-generation was practically eliminated, 
and the expected load shedding was reduced to much lower lev-
els, even for the case of Irma II, with a stronger hurricane and a 
more vulnerable layout. Thus, the mediocre increase in costs, 
presented in TABLE V, is essentially the cost of reliability en-
hancement, which is rather significant, as shown in TABLE VI. 

TABLE VI  
EXPECTED LOST LOAD AND OVER GENERATION 

Hurricane 
case 

BAU Preventive operation 
Expected 
lost load  

Expected over-
generation 

Expected 
lost load  

Expected over-
generation 

Harvey I 6.23% 0.00% 3.65% 0.00% 
Harvey II 12.91% 4.79% 3.46% 0.01% 
Irma I 8.47% 0.00% 5.73% 0.00% 
Irma II 15.25% 6.20% 3.54% 0.00% 

VII. COMPUTATIONAL COMPLEXITY 
The optimization problem, developed in this paper, is a sto-

chastic mixed-integer linear program. Solution time in this class 
of problems is heavily influenced by the number of integer var-
iables and scenarios. The solution times for the four cases, pre-
sented in this paper, are shown in TABLE VII. For instance, 
Harvey II and Irma I had similar number of scenarios, but Irma 
I was solved over 48 hours, while Harvey II was solved over 24 
hours. Thus, Irma I involved a larger number of variables, es-
pecially binary commitment variables. This made the solution 
time for Irma I significantly longer than Harvey II. Harvey I and 
Irma II had relatively small numbers of scenarios, and both of 
them were solved in a relatively short period of time. It should 
be noted that the solution time can be substantially longer for 
larger systems. Thus, alternative formulations and more rigor-
ous scenario reduction techniques should be implemented to 
further reduce the solution time. 

TABLE VII 	
SOLUTION TIME OF THE FOUR CASES 

Hurricane case Harvey I Harvey II Irma I Irma II 
Solution time (min) 46.63 494.51 2889.28 0.31 
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VIII. CONCLUSIONS 
This paper, for the first time, develops an integrated model, 

where weather forecast information is effectively incorporated 
in power system operation. First, a finite element structural 
model of the transmission towers is developed. The model takes 
weather data as an input and calculates the failure probability 
of the transmission lines. These probabilities are, then, explic-
itly included within a day-ahead unit commitment model. Thus, 
the integrated framework is able to guide effective preventive 
operation under extreme weather conditions. The proposed 
model was validated against business as usual operation under 
Hurricane Irma and Harvey, synthesized for IEEE 118-bus sys-
tem. To explore the feasibility and effectiveness of preventive 
operation, incorporating weather information, the simulation 
studies assumed that the weather forecast is exact. The results 
suggest that the proposed integrated model is able to drastically 
reduce power outages (33%-83%), during hurricanes by mod-
erately increasing the operation cost (up to 51%). Further re-
search is required for improving the computational efficiency 
of the developed model and testing on real-world large-scale 
systems. Future research will also study the impacts of weather 
forecast uncertainty on effectiveness of preventive operation. 
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