Computationally Efficient Operation of Power Flow Controllers

Mostafa Ardakani

mostafa.ardakani@utah.edu

University of Utah

Congestion Cost in US ISO/RTOs

Transmission Bottlenecks

Choices

More efficient utilization of the existing network is cheaper and paramount!

Power Flow Physics

Electricity flows according to the laws of physics, not economics!

DC Power Flow Equation

$$F = B(\theta_j - \theta_i)$$

This is a linear approximation of AC power flow equation:

- Relatively accurate
- Facilitates efficient computation

$$F_k = B_k(\theta_j - \theta_i)$$

 $B^{\min} \le B \le B^{\max}$

Variable Impedance FACTS Nonlinear → Computational Burden

Power Flow Physics

Computational Burden

Susceptance

Electricity flows according to the laws of physics, not economics! No FACTS set point adjustment within EMS or MMS software

Facilitates efficient computation

$F_{k} = B_{k}(\theta_{j} - \theta_{i})$ Variable Impedance FACTS Infrequent ad hoc adjustments

Technology – TCSC

• Thyristor-Controlled Series Compensator

Technology – Smart Wires

Power Router brochure

Objective:

Design a Computationallyefficient Algorithm to Control the Power Flow Controller Set Points

Shift Factor Structure

- Industry implementations of SCUC and SCED do not use $B \theta$ structure; they use PTDFs.
 - No need to model all the voltage angles
 - No need to calculate all the flows
 - Significantly faster compared to $B\theta$

The injection pair involves NONLINEAR terms.

Computational Complexity – NLP/MILP

What if we knew which B&B tree node is the optimal node?

Reformulation to an MILP

$$\psi_k = \frac{f_k \Delta b_k}{b_k}$$

$$f_k \ge 0: \quad \frac{f_k \Delta b_k^{max}}{b_k} \le \psi_k \le \frac{f_k \Delta b_k^{min}}{b_k}$$
$$f_k \ge 0: \quad \frac{f_k \Delta b_k^{max}}{b_k} \le \psi_k \le \frac{f_k \Delta b_k^{min}}{b_k}$$

Engineering Insight

Engineering Insight

- We only need to know the direction of the power flow
- We know this d This is a heuristic

Even if we do not know the direction, we can **Optimality is not guaranteed!**

Knowing the direction would reduce the complexity to a LP

SCED Cost Savings—IEEE 118-Bus System

Savings are calculated compared to a transportation model

Located on More Heavily Utilized Lines: 100% Optimal

SCED Cost Savings—Polish System

Located on More Heavily Utilized Lines: 100% Optimal

Results – Polish System

$B\theta$ versus PTDF

Power & Energy Society*

Fixed versus Adaptive Thresholds

Corrective Adjustments

- In corrective adjustments we have even better insight about the direction of the power flow: pre- or post- contingency flows
- Goal: minimization of post-contingency network violations
- Optimal utilization of FACTS in recourse state only

Corrective Results—IEEE 118-Bus System

Power & Energy Society

Located on More Heavily Utilized Lines: 100% Optimal

Conclusions

- Mathematical representation of OPF with FACTS: NLP
- We reformulated the NLP to a MILP; using our knowledge of electricity flow physics, we reformulate the problem to an LP
- The LP heuristic is extremely effective: it found the optimal solution more than 98% of the time.
- The heuristic is extremely fast (LP) and would not add to the complexity of the OPF problem

Questions?

Mostafa Ardakani mostafa.ardakani@utah.edu

- M. Sahraei-Ardakani and K. Hedman, "A Fast LP Approach for Enhanced Utilization of Variable Impedance Based FACTS Devices," *IEEE Transactions on Power Systems*
- M. Sahraei-Ardakani and K. Hedman, "Day-Ahead Corrective Adjustment of FACTS Reactance: A Linear Programming Approach," *IEEE Transactions on Power Systems*
- M. Sahraei-Ardakani and S. Blumsack, "Transfer Capability Improvement through Market-Based Operation of Series FACTS Devices," *IEEE Transactions on Power System*
- M. Sahraei-Ardakani and K. Hedman, "Computationally Efficient Adjustment of FACTS Set Points in DC Optimal Power Flow with Shift Factor Structure," *IEEE Transactions on Power*

